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2 BGLR

BGLR Bayesian Generalized Linear Regression

Description

The BGLR (‘Bayesian Generalized Linear Regression’) function was designed to fit parametric
regression models using different types of shrinkage methods. Several of the models implemented
in this function were presented in de los Campos et al. (2009, 2010).

Usage

BGLR(y, response_type = "gaussian", a=NULL, b=NULL,ETA = NULL, nIter = 1500,
burnIn = 500, thin = 5, saveAt = "", S0 = NULL,
df0 =5, R2 = 0.5, minAbsBeta = 1e-09, weights = NULL,
verbose = TRUE, rmExistingFiles = TRUE)

Arguments

y (numeric, n) the data-vector (NAs allowed).

response_type string, specify the distribution of the response variable, right now only gaussian,
Bernoulli and ordinal responses are allowed.

a vector for specifying lower bound for censored observations, default value NULL.
See details.

b vector for specifying upper bound for censored observations, default value NULL.
See details.

ETA A list of predictors and prior specifications for the regression coefficients. For
example the prior for the regression coefficients can be that used in Bayesian
LASSO, Bayesian ridge regression, BayesA, BayesB, BayesC-pi, Elastic Net
LASSO, etc. See details below.

weights (numeric, n) a vector of weights, may be NULL.

nIter,burnIn, thin

(integer) the number of iterations, burn-in and thinning.

saveAt (string) this may include a path and a pre-fix that will be added to the name of
the files that are saved as the program runs.

S0 The scale parameter for the scaled inverse-chi squared distribution for σ2
e .

df0 The degrees of freedom for the scaled inverse-chi squared distribution for σ2
e .

R2 ...

minAbsBeta The minimum absolute value of the components of βL to avoid numeric prob-
lems when sampling from τ 2, default 1× 10−9.

verbose logical, if TRUE prints iteration history, defalt TRUE.

rmExistingFiles

logical, if TRUE removes existing output files from previous runs, default value
is TRUE.



BGLR 3

Details

The program run a Gibbs sampler for the regression model given below.

Likelihood. The equation for the data is:

y = 1µ+XFβF +
∑Hβ
h=1XRhβRh +

∑Hu
h=1 uh + ε (1)

where µ is an effect common to all individuals, XF = {xFij} represent covariates whose effects
βF = {βFj} will be estimated shrinkage (the so-called ‘fixed effecs’, e.g., age, sex), XRh =
{xRhij} represent covariates whose effects βRh = {βRhj} will be treated as ‘random effects’ and
will be estimated using shrinkage estimation methods (non-flat priors in a Bayesian context) and
uh = {uhi} are random effects used to describe, for example, a regression on a pedigree or a RKHS
regression on markers.

Prior
The model specification is complete once we assign a prior distribution to the model unknowns.
The intercept µ and βF are assigned flat priors, while βRh, uh and σ2

e are assigned non flat priors,
denoted as p(βR), p(u) and p(σ2

e), respectively. The structure of the priors is as follows:

p(µ,βF ,βR1, ...,βRHβ ,u1, ...,uHu, σ
2
e) ∝

{∏Hβ
h=1 p(βRh)

}{∏Hu
h=1 p(uh)

}
χ−2(σ2

e |df, S), (2)

where χ−2(σ2|df, S) is a scaled-inverse Chi-square density assigned to σ2 with degree of freedom
and scale parameter df and S respectively.

The prior distribution assigned to p(uh|θuh) is multivariate normal centered at zero and with co-
variance σ2

uhKuh whereKuh is a positive definite-matrix and σ2
uh is an unknow variance paramter.

The prior assigned to this parameter is a scaled inverse chi-squared so that

p(uh, σ
2
uh) = N(uh|0, σ2

uhKuh)χ−2(Suh, dfuh) (3)

Following standard assumptions of Bayesian regression models, regression coefficients are assigned
IID priors; therefore: p(βRh|θRh) =

{∏pRh

j=1 p(βRhj |θRh)
}
p(θRh), where p(βRhj |θRh) can be

a double exponential distribution, a normal distribution, etc., θRh is a vector of unknown indexing
the prior density assigned to marker effects and p(θRh) is the prior assigned to these unknowns.

Collecting assumptions we have:

p(µ,βF ,βR1, ....,βRHβ ,u1, ...,uHu, σ
2) ∝

∏Hβ
h=1

{∏pRh

j=1 p(βRhj |θRh)
}
p(θRh)

×
{∏Hu

h=1N(uh|0, σ2
uhKuh)χ−2(σ2

uh|Suh, dfuh)
}

×χ−2(σ2|df, S)

Special cases
Bayesian Gaussian Regression (BGR)

A common approach in Bayesian shrinkage estimation is to assign independent and identically
distributed (IDD) conditional Gaussian priors with unknown variance. This can be impemented by
setting

p(βRh|θRh) =


pRh∏
j=1

N(βRhj |0, σ2
βh)

χ−2(σ2
βh|dfβh, Sβh).
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When σ2
βh is known, using this prior yield estimates which are equivalent to those of a RR. In a

BGR the excent of shrinkage is controlled by the variance (or noise-to-signal) ratio λh = σ2
e/σ

2
βh.

This quantity is the same for all regression coefficients included in βRh; this may not be appropiate
if some markers are located in regions harboring QTL while others are located in regions which
are not associated to genetic variance. To overcome this problem, alternative shrinkage procedures
such as those described below can be used.

Mixtures of scaled-normal densities

This class of mixtures can be used as prior of marker effects to obtain a type of shrinkage different
than that of a BGR. Examples of this are the double-exponential (DE) and scaled-t densities, which
are commonly used as prior of maker effects in Whole Genomic Prediction (WPG). The results
models are known as the Bayesian LASSO (BL) and BayesA respectively. Relative to the Gaussian
density used in BGR, the DE and the scaled-t densities have higer mass at zero and thicker tails,
inducing a different type of shrinkage. The DE and scaled-t prior densities can be represented as
mixtures of scaled normal-densities of the form

p(βRhj |H) =

∫
N(βRhj |0, σ2

βhj)p(σ
2
βhj |H)∂σ2

βhj

where σ2
βhj is a marker-specific variance parameter, p(σ2

βhj |H) is a prior density assigned to this
variance parameter and H is a set of hyperparameters which may be specified a-priori or estimated
from the data. When p(σ2

βhj |H) is an exponential (scaled-inverse chi-square) density, the resulting
marginal prior density of marker effects is a double-exponential (scaled-t).

Pedigree-based regressions

They represent a generalization of the concept of ‘family history’ to complex genealogies. These
regressions have been used over more than 5 decades for prediction of genetic values in animal and
plant breeding applications. Pedigree regressions can be implemented by setting Khu = A where
A = {a(i, i′)} is a matrix whose entries are twice the coefficient of kinship between individuals,
which can be computed from a pedigree.

Reproducing Kernel Hilbert Regressions(RKHS)

RKHS are used for semi-parametric regressions in applications as diverse as scatter-plot smoothing
(smooting spline), spacial statistics (Kriging), gene expression or WGP. Estimates from RKHS can
be motivated as the solution to a penalized optimization problem of as posterior modes in certain
class of Bayesian models. A Bayesian formulation of RKHS can be implemented by simply setting
Kuh = {Kuh(i, i′)} to be a matrix whose entries contain the evaluations of a reproducing kernel
at pairs of poings (i, i′). In WGP models the reproducing kernel, K(i, i′) = K(zi, z

′
i), maps from

pairs of marker genotypes (zi, z
′
i) onto co-variance function. For instance, using the Gaussian

kernel, K(i, i′) = exp
(
−ω||zi − zi′ ||2

)
, where ||zi − zi′ || is a Euclidean distance between the

two vectors of marker genotypes and ω is a bandwith parameter.

Censored outcomes

In BGLR censored outcomes are dealt with as a missing data problem. BGLR handles three types
of censoring: left, right and interval censored. For an interval censored data-point the information
available is ai < yi < bi where: ai and bi are known lower and upper bounds and yi is the actual
phenotype which for censored data points is un-observed. Rigth censoring occurs when bi is also
uknown, therefore, the only information available is ai < yi. In a time-to-event setting this means
that we know that time to event exceeded the time at censoring given by ai. Left censoring occurs
when bi is unknown; therefore, the only information available is: yi < bi. In BGLR censored
outcomes are then specified with three vectors, y, a and b. The configuration of the triplet for
un-censored, right-censored, left-censored and interval censored are described in the table below.

a y b
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Un-censored NULL yi NULL
Right censored ai NA ∞
Left censored −∞ NA bi
Interval censored ai NA bi

The only modification introduced in the Gibbs sampler required for handling censored data points
consist of sampling, at each iteration of the Gibbs sampler, the censored phenotypes form the cor-
responding fully-conditional densities which in BGLR are truncated normal densities.

Binary outcomes

They can be modeled using the threshold model, or probit link. Here, probability of success is
P (Yi = 1) = Φ(ηi) where Φ(·) is the standard normal cumulative distribution function (also
known as normal probit link) and ηi is a linear predictor which can include the type of fixed or
random effects handled by BGLR. In order to run a regression for binary outcomes, the response
must be coded with 0’s (failure) and 1’s (success), and the argument response_type should be set to
"Bernoulli". More details about this model can be found in Albert & Chib (1993).

Ordinal outcomes

They can be modeled using also the threshold model. Here we model, πij = P (Yi ≤ j) = Φ(ηij),
where ηij = γj − x′iβ, where Φ(·) is the standard normal cumulative distribution function, γj is a
threshold, the thresholds must satisfy, −∞ = γ0 < γ1 < · · · < γJ = ∞, J is the cardinality of
y. In order to run a regression for ordinal outomes, the response must be coded as 1, ..., J , and the
data should be ordered accordingly, the argument response_type should be set to "ordinal". More
details about this model can be found in Albert & Chib (1993).

Value

A list with posterior means, posterior standard deviations, and the parameters used to fit the model:

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

References

Albert J,. S. Chib. 1993. Bayesian Analysis of Binary and Polychotomus Response Data. JASA,
88: 669-679.

de los Campos G., H. Naya, D. Gianola, J. Crossa, A. Legarra, E. Manfredi, K. Weigel and J. Cotes.
2009. Predicting Quantitative Traits with Regression Models for Dense Molecular Markers and
Pedigree. Genetics 182: 375-385.

de los Campos, G., D. Gianola, G. J. M., Rosa, K. A., Weigel, and J. Crossa. 2010. Semi-parametric
genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods.
Genetics Research, 92:295-308.

Park T. and G. Casella. 2008. The Bayesian LASSO. Journal of the American Statistical Associa-
tion 103: 681-686.

Spiegelhalter, D.J., N.G. Best, B.P. Carlin and A. van der Linde. 2002. Bayesian measures of model
complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B (Statistical
Methodology) 64 (4): 583-639.



6 BLR

Examples

## Not run:
#Demos
library(BGLR)

#BayesA
demo(BA)

#BayesB
demo(BB)

#Bayesian LASSO
demo(BL)

#Bayesian Ridge Regression
demo(BRR)

#BayesCpi
demo(BayesCpi)

#RKHS
demo(RKHS)

#Binary traits
demo(Bernoulli)

#Ordinal traits
demo(ordinal)

#Censored traits
demo(censored)

## End(Not run)

BLR Bayesian Linear Regression

Description

The BLR (‘Bayesian Linear Regression’) function was designed to fit parametric regression models
using different types of shrinkage methods. An earlier version of this program was presented in de
los Campos et al. (2009).

Usage

BLR(y, XF, XR, XL, GF, prior, nIter, burnIn, thin,thin2,saveAt,
minAbsBeta,weights)
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Arguments

y (numeric, n) the data-vector (NAs allowed).

XF (numeric, n× pF ) incidence matrix for βF , may be NULL.

XR (numeric, n× pR) incidence matrix for βR, may be NULL.

XL (numeric, n× pL) incidence matrix for βL, may be NULL.

GF (list) providing an $ID (integer, n) linking observations to groups (e.g., lines or
sires) and a (co)variance structure ($A, numeric, pU × pU ) between effects of
the grouping factor (e.g., line or sire effects). Note: ID must be an integer taking
values from 1 to pU ; ID[i]=q indicates that the ith observation in y belongs to
cluster q whose (co)variance function is in the qth row (column) of A. GF may
be NULL.

weights (numeric, n) a vector of weights, may be NULL.
nIter,burnIn, thin

(integer) the number of iterations, burn-in and thinning.

saveAt (string) this may include a path and a pre-fix that will be added to the name of
the files that are saved as the program runs.

prior (list) containing the following elements,

• prior$varE, prior$varBR, prior$varU: (list) each providing degree of free-
dom ($df) and scale ($S). These are the parameters of the scaled inverse-χ2

distributions assigned to variance components, see Eq. (2) below. In the pa-
rameterization used by BLR() the prior expectation of variance parameters
is S/(df − 2).

• prior$lambda: (list) providing $value (initial value for λ); $type (‘random’
or ‘fixed’) this argument specifies whether λ should be kept fixed at the
value provided by $value or updated with samples from the posterior dis-
tribution; and, either $shape and $rate (this when a Gamma prior is desired
on λ2) or $shape1, $shape2 and $max, in this case p(λ|max, α1, α2) ∝
Beta

(
λ

max |α1, α2

)
. For detailed description of these priors see de los

Campos et al. (2009).

thin2 This value controls wether the running means are saved to disk or not. If thin2
is greater than nIter the running means are not saved (default, thin2=1× 1010).

minAbsBeta The minimum absolute value of the components of βL to avoid numeric prob-
lems when sampling from τ 2, default 1× 10−9

Details

The program runs a Gibbs sampler for the Bayesian regression model described below.

Likelihood. The equation for the data is:

y = 1µ+XFβF +XRβR +XLβL +Zu+ ε (1)

where y, the response is a n× 1 vector (NAs allowed); µ is an intercept; XF ,XR,XL and Z are
incidence matrices used to accommodate different types of effects (see below), and; ε is a vector of
model residuals assumed to be distributed as ε ∼ N(0, Diag(σ2

ε/w
2
i )), here σ2

ε is an (unknown)
variance parameter and wi are (known) weights that allow for heterogeneous-residual variances.

Any of the elements in the right-hand side of the linear predictor, except µ and ε , can be omitted;
by default the program runs an intercept model.
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Prior. The residual variance is assigned a scaled inverse-χ2 prior with degree of freedom and
scale parameter provided by the user, that is, σ2

ε ∼ χ−2(σ2
ε|dfε, Sε). The regression coefficients

{µ,βF ,βR,βL,u} are assigned priors that yield different type of shrinkage. The intercept and
the vector of regression coefficients βF are assigned flat priors (i.e., estimates are not shrunk).
The vector of regression coefficients βR is assigned a Gaussian prior with variance common to all

effects, that is, βR,j
iid∼ N(0, σ2

βR
). This prior is the Bayesian counterpart of Ridge Regression. The

variance parameter σ2
βR

, is treated as unknown and it is assigned a scaled inverse-χ2 prior, that is,
σ2
βR
∼ χ−2(σ2

βR
|dfβR

, SβR
) with degrees of freedom dfβR

, and scale SβR
provided by the user.

The vector of regression coefficients βL is treated as in the Bayesian LASSO of Park and Casella
(2008). Specifically,

p(βL, τ
2, λ|σ2

ε) =

{∏
k

N(βL,k|0, σ2
ετ

2
k )Exp

(
τ2k |λ2

)}
p(λ),

where, Exp(·|·) is an exponential prior and p(λ) can either be: (a) a mass-point at some value (i.e.,
fixed λ); (b) p(λ2) ∼ Gamma(r, δ) this is the prior suggested by Park and Casella (2008); or, (c)
p(λ|max, α1, α2) ∝ Beta

(
λ

max |α1, α2

)
, see de los Campos et al. (2009) for details. It can be

shown that the marginal prior of regression coefficients βL,k,
∫
N(βL,k|0, σ2

ετ
2
k )Exp

(
τ2k |λ2

)
∂τ2k ,

is Double-Exponential. This prior has thicker tails and higher peak of mass at zero than the Gaussian
prior used for βR, inducing a different type of shrinkage.

The vector u is used to model the so called ‘infinitesimal effects’, and is assigned a prior u ∼
N(0,Aσ2

u), where, A is a positive-definite matrix (usually a relationship matrix computed from a
pedigree) and σ2

u is an unknow variance, whose prior is σ2
u ∼ χ−2(σ2

u|dfu, Su).

Collecting the above mentioned assumptions, the posterior distribution of model unknowns, θ ={
µ,βF ,βR, σ

2
βR
,βL, τ

2, λ,u, σ2
u, σ

2
ε,
}

, is,

p(θ|y) ∝ N
(
y|1µ+XFβF +XRβR +XLβL +Zu;Diag

{
σ2
ε

w2
i

})
×

{∏
j

N
(
βR,j |0, σ2

βR

)}
χ−2

(
σ2
βR
|dfβR

, SβR

)
×
{∏
k

N
(
βL,k|0, σ2

ετ
2
k

)
Exp

(
τ2k |λ2

)}
p(λ) (2)

×N(u|0,Aσ2
u)χ−2(σ2

u|dfu, Su)χ−2(σ2
ε|dfε, Sε)

Value

A list with posterior means, posterior standard deviations, and the parameters used to fit the model:

$yHat the posterior mean of 1µ+XFβF +XRβR +XLβL +Zu+ ε.

$SD.yHat the corresponding posterior standard deviation.

$mu the posterior mean of the intercept.

$varE the posterior mean of σ2
ε.

$bR the posterior mean of βR.

$SD.bR the corresponding posterior standard deviation.

$varBr the posterior mean of σ2
βR

.

$bL the posterior mean of βL.

$SD.bL the corresponding posterior standard deviation.
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$tau2 the posterior mean of τ 2.

$lambda the posterior mean of λ.

$u the posterior mean of u.

$SD.u the corresponding posterior standard deviation.

$varU the posterior mean of σ2
u.

$fit a list with evaluations of effective number of parameters and DIC (Spiegelhalter
et al., 2002).

$whichNa a vector indicating which entries in y were missing.

$prior a list containig the priors used during the analysis.

$weights vector of weights.

$fit list containing the following elements,

• $logLikAtPostMean: log-likelihood evaluated at posterior mean.

• $postMeanLogLik: the posterior mean of the Log-Likelihood.

• $pD: estimated effective number of parameters, Spiegelhalter et al. (2002).

• $DIC: the deviance information criterion, Spiegelhalter et al. (2002).

$nIter the number of iterations made in the Gibbs sampler.

$burnIn the nuber of iteratios used as burn-in.

$thin the thin used.

$y original data-vector.

The posterior means returned by BLR are calculated after burnIn is passed and at a thin as specified
by the user.

Save. The routine will save samples of µ, variance components and λ and running means (rm*.dat).
Running means are computed using the thinning specified by the user (see argument thin above);
however these running means are saved at a thinning specified by argument thin2 (by default,
thin2=1× 1010 so that running means are computed as the sampler runs but not saved to the disc).

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

References

de los Campos G., H. Naya, D. Gianola, J. Crossa, A. Legarra, E. Manfredi, K. Weigel and J. Cotes.
2009. Predicting Quantitative Traits with Regression Models for Dense Molecular Markers and
Pedigree. Genetics 182: 375-385.

Park T. and G. Casella. 2008. The Bayesian LASSO. Journal of the American Statistical Associa-
tion 103: 681-686.

Spiegelhalter, D.J., N.G. Best, B.P. Carlin and A. van der Linde. 2002. Bayesian measures of model
complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B (Statistical
Methodology) 64 (4): 583-639.
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Examples

## Not run:
########################################################################
##Example 1:
########################################################################

rm(list=ls())
setwd(tempdir())
library(BGLR)
data(wheat) #Loads the wheat dataset

y=wheat.Y[,1]
### Creates a testing set with 100 observations
whichNa<-sample(1:length(y),size=100,replace=FALSE)
yNa<-y
yNa[whichNa]<-NA

### Runs the Gibbs sampler
fm<-BLR(y=yNa,XL=wheat.X,GF=list(ID=1:nrow(wheat.A),A=wheat.A),

prior=list(varE=list(df=3,S=0.25),
varU=list(df=3,S=0.63),
lambda=list(shape=0.52,rate=1e-4,
type=’random’,value=30)),
nIter=5500,burnIn=500,thin=1)

MSE.tst<-mean((fm$yHat[whichNa]-y[whichNa])^2)
MSE.tst
MSE.trn<-mean((fm$yHat[-whichNa]-y[-whichNa])^2)
MSE.trn
COR.tst<-cor(fm$yHat[whichNa],y[whichNa])
COR.tst
COR.trn<-cor(fm$yHat[-whichNa],y[-whichNa])
COR.trn

plot(fm$yHat~y,xlab="Phenotype",
ylab="Pred. Gen. Value" ,cex=.8)

points(x=y[whichNa],y=fm$yHat[whichNa],col=2,cex=.8,pch=19)

x11()
plot(scan(’varE.dat’),type="o",

ylab=expression(paste(sigma[epsilon]^2)))

########################################################################
#Example 2: Ten fold, Cross validation, environment 1,
########################################################################

rm(list=ls())
setwd(tempdir())
library(BGLR)
data(wheat) #Loads the wheat dataset
nIter<-1500 #For real data sets more samples are needed
burnIn<-500
thin<-10
folds<-10
y<-wheat.Y[,1]
A<-wheat.A
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priorBL<-list(
varE=list(df=3,S=2.5),
varU=list(df=3,S=0.63),
lambda = list(shape=0.52,rate=1e-5,value=20,type=’random’)

)

set.seed(123) #Set seed for the random number generator
sets<-rep(1:10,60)[-1]
sets<-sets[order(runif(nrow(A)))]
COR.CV<-rep(NA,times=(folds+1))
names(COR.CV)<-c(paste(’fold=’,1:folds,sep=’’),’Pooled’)
w<-rep(1/nrow(A),folds) ## weights for pooled correlations and MSE
yHatCV<-numeric()

for(fold in 1:folds)
{

yNa<-y
whichNa<-which(sets==fold)
yNa[whichNa]<-NA
prefix<-paste(’PM_BL’,’_fold_’,fold,’_’,sep=’’)
fm<-BLR(y=yNa,XL=wheat.X,GF=list(ID=(1:nrow(wheat.A)),A=wheat.A),prior=priorBL,

nIter=nIter,burnIn=burnIn,thin=thin)
yHatCV[whichNa]<-fm$yHat[fm$whichNa]
w[fold]<-w[fold]*length(fm$whichNa)
COR.CV[fold]<-cor(fm$yHat[fm$whichNa],y[whichNa])

}

COR.CV[11]<-mean(COR.CV[1:10])
COR.CV

########################################################################

## End(Not run)

mice mice dataset

Description

The mice data comes from an experiment carried out to detect and locate QTLs for complex traits in
a mice population (Valdar et al. 2006a; 2006b). This data has already been analyzed for comparing
genome-assisted genetic evaluation methods (Legarra et al. 2008). The data file consists of 1814
individuals, each genotyped for 10,346 polymorphic markers. The trait here here is body mass
index (BMI), and additional information about body weight, season, month and day.

Usage

data(mice)

Format

Matrix mice.A contains the pedigree. The matrix mice.X contains the markes information and
mice.pheno contains phenotypical information.
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Source

http://gscan.well.ox.ac.uk

References

Legarra A., Robert-Granie, E. Manfredi, and J. M. Elsen, 2008 Performance of genomic selection
in mice. Genetics 180:611-618.

Valdar, W., L. C. Solberg, D. Gauguier, S. Burnett, P. Klenerman et al., 2006a Genome-wide genetic
association of complex traits in heterogeneous stock mice. Nat. Genet. 38:879-887.

Valdar, W., L. C. Solberg, D. Gauguier, W. O. Cookson, J. N. P. Rawlis et al., 2006b Genetic and
environmental effects on complex traits in mice. Genetics, 174:959-984.

mice.A Pedigree info for the mice dataset

Description

Is a numerator relationship matrix (1814 x 1814) computed from a pedigree that traced back many
generations.

Source

http://gscan.well.ox.ac.uk

References

de los Campos G., H. Naya, D. Gianola, J. Crossa, A. Legarra, E. Manfredi, K. Weigel and J. Cotes.
2009. Predicting Quantitative Traits with Regression Models for Dense Molecular Markers and
Pedigree. Genetics 182: 375-385.

mice.pheno Phenotypical data for the mice dataset

Description

A data frame with pheotypical information related to diabetes. The data frame has several columns:
SUBJECT.NAME, PROJECT.NAME, PHENOTYPE.NAME, Obesity.BMI, Obesity.BodyLength,
Date.Month, Date.Year, Date.Season,cDate.StudyStartSeconds, Date.Hour, Date.StudyDay, GEN-
DER, EndNormalBW, CoatColour, CageDensity, Litter, cage.

The phenotypes are described in http://gscan.well.ox.ac.uk.

Source

http://gscan.well.ox.ac.uk

http://gscan.well.ox.ac.uk
http://gscan.well.ox.ac.uk
http://gscan.well.ox.ac.uk
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mice.X Molecular markers

Description

Is a matrix ( 1814 x 10346) with SNP markers.

Source

http://gscan.well.ox.ac.uk

plot.BGLR Plots for BGLR Analysis

Description

Plots observed vs predicted values for objects of class BGLR.

Usage

## S3 method for class ’BGLR’
plot(x, ...)

Arguments

x An object of class BGLR.

... Further arguments passed to or from other methods.

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

See Also

BGLR.

Examples

## Not run:

setwd(tempdir())
library(BGLR)
data(wheat)
out=BLR(y=wheat.Y[,1],XL=wheat.X)
plot(out)

## End(Not run)

http://gscan.well.ox.ac.uk
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predict.BGLR Predictions from BGLR Analysis

Description

Predicting values using results from BGLR function.

Usage

## S3 method for class ’BGLR’
predict(object,newdata = NULL, ...)

Arguments

object An object of class BGLR.

newdata new data, see BGLR function for more details.

... Further arguments passed to or from other methods.

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

See Also

BGLR.

Examples

## Not run:

setwd(tempdir())
library(BGLR)
data(wheat)
out=BLR(y=wheat.Y[,1],XL=wheat.X)

## End(Not run)

read_bed read_bed

Description

This function reads genotype information stored in binary PED (BED) files used in plink. These
files save space and time. The pedigree/phenotype information is stored in a separate file (*.fam)
and the map information is stored in an extededed MAP file (*.bim) that contains information about
the allele names, which would otherwise be lost in the BED file. More details http://pngu.mgh.
harvard.edu/~purcell/plink/binary.shtml.

http://pngu.mgh.harvard.edu/~purcell/plink/binary.shtml
http://pngu.mgh.harvard.edu/~purcell/plink/binary.shtml
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Usage

read_bed(bed_file,bim_file,fam_file,na.strings,verbose)

Arguments

bed_file binary file with genotype information.

bim_file text file with pedigree/phenotype information.

fam_file text file with extended map information.

na.strings missing value indicators, default=c("0","-9").

verbose logical, if true print hex dump of bed file.

Value

The routine will return a vector of dimension n*p (n=number of individuals, p=number of snps),
with the snps(individuals) stacked, depending whether the BED file is in SNP-major or individual-
major mode.

The vector contains integer codes:

Integer code Genotype
0 00 Homozygote "1"/"1"
1 01 Heterozygote
2 10 Missing genotype
3 11 Homozygote "2"/"2"

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

Examples

## Not run:

library(BGLR)
demo(read_bed)

## End(Not run)

read_ped read_ped

Description

This function reads genotype information stored in PED format used in plink.

Usage

read_ped(ped_file)
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Arguments

ped_file ASCII file with genotype information.

Details

The PED file is a white-space (space or tab) delimited file: the first six columns are mandatory:

Family ID Individual ID Paternal ID Maternal ID Sex (1=male; 2=female; other=unknown) Pheno-
type

The IDs are alphanumeric: the combination of family and individual ID should uniquely identify a
person. A PED file must have 1 and only 1 phenotype in the sixth column. The phenotype can be
either a quantitative trait or an affection status column.

Value

The routine will return a vector of dimension n*p (n=number of individuals, p=number of snps),
with the snps stacked.

The vector contains integer codes:

Integer code Genotype
0 00 Homozygote "1"/"1"
1 01 Heterozygote
2 10 Missing genotype
3 11 Homozygote "2"/"2"

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

Examples

## Not run:

library(BGLR)
demo(read_ped)

## End(Not run)

wheat wheat dataset

Description

Information from a collection of 599 historical CIMMYT wheat lines. The wheat data set is from
CIMMYT’s Global Wheat Program. Historically, this program has conducted numerous interna-
tional trials across a wide variety of wheat-producing environments. The environments represented



wheat.A 17

in these trials were grouped into four basic target sets of environments comprising four main agro-
climatic regions previously defined and widely used by CIMMYT’s Global Wheat Breeding Pro-
gram. The phenotypic trait considered here was the average grain yield (GY) of the 599 wheat lines
evaluated in each of these four mega-environments.

A pedigree tracing back many generations was available, and the Browse application of the In-
ternational Crop Information System (ICIS), as described in http://cropwiki.irri.org/icis/
index.php/TDM_GMS_Browse (McLaren et al. 2005), was used for deriving the relationship matrix
A among the 599 lines; it accounts for selection and inbreeding.

Wheat lines were recently genotyped using 1447 Diversity Array Technology (DArT) generated by
Triticarte Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au). The DArT markers
may take on two values, denoted by their presence or absence. Markers with a minor allele fre-
quency lower than 0.05 were removed, and missing genotypes were imputed with samples from
the marginal distribution of marker genotypes, that is, xij = Bernoulli(p̂j), where p̂j is the es-
timated allele frequency computed from the non-missing genotypes. The number of DArT MMs
after edition was 1279.

Usage

data(wheat)

Format

Matrix Y contains the average grain yield, column 1: Grain yield for environment 1 and so on.
The matrix A contains additive relationship computed from the pedigree and matrix X contains the
markers information.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

References

McLaren, C. G., R. Bruskiewich, A.M. Portugal, and A.B. Cosico. 2005. The International Rice
Information System. A platform for meta-analysis of rice crop data. Plant Physiology 139: 637-
642.

wheat.A Pedigree info for the wheat dataset

Description

Is a numerator relationship matrix (599 x 599) computed from a pedigree that traced back many
generations. This relationship matrix was derived using the Browse application of the International
Crop Information System (ICIS), as described in http://cropwiki.irri.org/icis/index.php/
TDM_GMS_Browse (McLaren et al. 2005).

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

http://cropwiki.irri.org/icis/index.php/TDM_GMS_Browse
http://cropwiki.irri.org/icis/index.php/TDM_GMS_Browse
http://www.triticarte.com.au
http://cropwiki.irri.org/icis/index.php/TDM_GMS_Browse
http://cropwiki.irri.org/icis/index.php/TDM_GMS_Browse
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References

McLaren, C. G., R. Bruskiewich, A.M. Portugal, and A.B. Cosico. 2005. The International Rice
Information System. A platform for meta-analysis of rice crop data. Plant Physiology 139: 637-
642.

wheat.sets Sets for cross validation (CV)

Description

Is a vector (599 x 1) that assigns observations to 10 disjoint sets; the assignment was generated at
random. This is used later to conduct a 10-fold CV.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

wheat.X Molecular markers

Description

Is a matrix (599 x 1279) with DArT genotypes; data are from pure lines and genotypes were coded
as 0/1 denoting the absence/presence of the DArT. Markers with a minor allele frequency lower
than 0.05 were removed, and missing genotypes were imputed with samples from the marginal
distribution of marker genotypes, that is, xij = Bernoulli(p̂j), where p̂j is the estimated allele
frequency computed from the non-missing genotypes. The number of DArT MMs after edition was
1279.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

wheat.Y Grain yield

Description

A matrix (599 x 4) containing the 2-yr average grain yield of each of these lines in each of the four
environments (phenotypes were standardized to a unit variance within each environment).

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.
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write_bed write_bed

Description

This function writes genotype information into a binary PED (BED) filed used in plink. For more
details about this format see http://pngu.mgh.harvard.edu/~purcell/plink/binary.shtml.

Usage

write_bed(x,n,p,bed_file)

Arguments

n integer, number of individuals.

p integer, number of SNPs.

x integer vector that contains the genotypic information coded as 0,1,2 and 3 (see
details below). The information must be in snp major order. The vector should
be of dimension n*p with the snps stacked.

bed_file output binary file with genotype information.

Details

The vector contains integer codes:

Integer code Genotype
0 00 Homozygote "1"/"1"
1 01 Heterozygote
2 10 Missing genotype
3 11 Homozygote "2"/"2"

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

Examples

## Not run:

library(BGLR)
demo(write_bed)

## End(Not run)

http://pngu.mgh.harvard.edu/~purcell/plink/binary.shtml
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